Selectivity in the initial C-H bond cleavage of n-butane on PdO(101).

نویسندگان

  • Can Hakanoglu
  • Feng Zhang
  • Abbin Antony
  • Aravind Asthagiri
  • Jason F Weaver
چکیده

We used temperature programmed reaction spectroscopy (TPRS) and molecular beam reflectivity measurements to investigate the initial dissociation of n-butane isotopologues on PdO(101) and determine kinetic parameters governing the selectivity of initial C-H(D) bond cleavage. We observe differences in the reactivity of the n-butane isotopologues on PdO(101) due to kinetic isotope effects, and find that the initial dissociation probability decreases with increasing surface temperature for each isotopologue. We performed an analysis of the dissociation kinetics using a model that is based on a precursor-mediated mechanism for n-butane dissociation and enables quantification of kinetic parameters for selective C-H bond cleavage by considering differences in the reactivity among the n-butane isotopologues. From the analysis, we estimate that 49% of the n-butane molecules which react during TPRS do so through 1° C-H bond cleavage when the initial coverage of n-butane lies between ∼40% and 100% of the saturation coverage of the molecular precursor state. For dissociation in the limit of zero coverage, we estimate that the conditional probability for 1° C-H bond cleavage is equal to ∼87% and varies only weakly with surface temperature from 300 K to 400 K. Analysis of the temperature dependent rate data further predicts that the barrier for 1° C-H bond cleavage is 3.5 kJ mol(-1) lower than that for 2° C-H bond cleavage for n-butane dissociation on PdO(101) in the limit of zero coverage. Our results provide evidence that the selectivity for 1° C-H bond cleavage on PdO(101) increases as the n-butane coverage decreases below ∼40% of the saturation value. We speculate that intermolecular interactions among the n-butane species are responsible for the apparent coverage dependence of the C-H bond selectivity for n-butane dissociation on PdO(101).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pathways for C-H bond cleavage of propane σ-complexes on PdO(101).

We used dispersion-corrected density functional theory (DFT-D3) calculations to investigate the initial C-H bond cleavage of propane σ-complexes adsorbed on the PdO(101) surface. The calculations predict that propane molecules adsorbed in η(1) configurations can undergo facile C-H bond cleavage on PdO(101), where the energy barrier for C-H bond activation is lower than that for desorption for e...

متن کامل

Optimization of the preparation procedure of Ni/Al2O3 catalyst for steam reforming of n-butane

Performance of Ni/Al2O3 catalysts (10 wt.% Ni) in steam reforming of n-butane was investigated in terms of n-butane conversion, selectivity to hydrogen and hydrogen yield. The process was carried out in a fixed-bed tubular reactor at 650 °C and atmospheric pressure. The volumetric flow rates of n-butane and steam were 0.1 mL/min and 0.6 mL/min, respectively. The catalysts were prepared by preci...

متن کامل

A Facile and Environmental Friendly Method for C=N Bond Cleavage of Imines Using p-Toluenesulfonic Acid in Solid State

A simple, efficient and clean procedure has been developed for the cleavage of imines C=N bond. Deprotection of imines to their parent carbonyl and amine compounds was achieved using p-toluenesulfonic acid in the solid state condition at 25-45 ˚C. The salient features of this methodology are shorter reaction times, cheap processing, high yields of product and easy availability of the catalyst. ...

متن کامل

H2 Elimination and C-C Bond Cleavage of Propene: A Theoretical Research

Propene dissociation channels were characterized by ab initio CCSD(T)/6-311++g(d,p) calculations. Inthis work the detailed mechanism of propene dissociation to C2H4+CH2, C2H2+H+CH3, C2H2+CH4 andC3H3+H2+H have been investigated. According to our calculations, ten fragments can be classified intofive dissociated channels. Our results point out that two mechanisms come into play in the H2 eliminat...

متن کامل

Catalytic consequences of spatial constraints and acid site location for monomolecular alkane activation on zeolites.

The location of Brønsted acid sites within zeolite channels strongly influences reactivity because of the extent to which spatial constraints determine the stability of reactants and of cationic transition states relevant to alkane activation catalysis. Turnover rates for monomolecular cracking and dehydrogenation of propane and n-butane differed among zeolites with varying channel structure (H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 29  شماره 

صفحات  -

تاریخ انتشار 2013